
Abstract. A combinatorial approach to fully conjugated
acyclic polyenes (CNHN�2) is considered with a view to
the extension of standard enumeration techniques to
treat a widened range of chemically interesting features.
As a ®rst step, enumerations are made respecting:
placement of single and double bonds, the occurrence
of cis/trans isomers, and the degree (and type) of
``radicality'' of such conjugated networks. As a further
extension, several structural (graph-theoretic) invariants
averaged over various types of isomer classes and sub-
classes are made, and then these invariants are utilized to
estimate several physicochemical properties averaged
over these same classes or sub-classes. The properties
currently so considered are heats of formation, indices
of refraction, and magnetic susceptibilities. Finally, the
asymptotic behaviors of isomer counts and isomer
properties in the many-atom limit is elaborated.

Key words: Conjugated polyenes ± Structural isomers ±
Stereoisomers ± Isomer enumeration ± Isomer-class
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1 Introduction

One of the classic areas of chemistry concerns isomer-
ism, the history of which (as in chapter 2 of [1]) dates
back to the ®rst part of the 1800s. Around 1860, with the
introduction of structural formulas, it was realized [2]
that there were di�erent possible structural arrange-
ments for the same formula, with such di�erent
structures corresponding to di�erent compounds. The
occurrence of such structural isomers provided impor-
tant evidence for the validity of classical structural
chemical ideas. Then, a little later, the occurrence of

stereoisomerism was crucial for the more detailed
tetrahedral-carbon- atom model of Van't Ho� and Le
Bel [3]. Even today, isomerism continues to be of central
importance as generally reviewed by Slanina [1], and for
example in the characterization of di�erent possible
fullerene structures [4], or in consideration of di�erent
possibilities [5] for linking or knotting of molecular
cycles.

Over the years, much e�ort has been devoted to the
generation of isomer lists or just to the enumeration of a
type of isomer. The problem of isomer enumeration [6]
in a formal manner was initiated in 1874 for the case of
alkanes, and continued as a topic of interest for some
time. Then, in 1935, motivated by the chemical isomer
problem, Polya [7, 8] developed a powerful combinato-
rial enumeration theory, which is now standard fare in
combinatorics texts. Polya [7] applied his theory to al-
kane isomer enumeration, and following this there have
been further re®nements in numerous papers, e.g. as
reviewed by Polya and Read [9], who also give a trans-
lation of Polya's foundational paper. During the last
decade or so, more elaborated permutation group-the-
oretical techniques have been re®ned and developed
[10±12], e.g. to enumerate isomers of certain selected
symmetries [12, 13]. On the other hand, Cyvin and
co-workers [14, 15] have noted that many of Polya's
general cycle-index-laden formalities may be foregone
in several chemical applications, so as to yield more
straightforward derivations, especially for systems of
``lower'' symmetry.

Here we adopt this straightforward point of view, and
investigate the possibility of some extensions to new
chemically oriented applications for the case of fully
conjugated acyclic polyenes. Indeed, such species have
recently been subjected to enumeration by Cyvin and
co-workers [15] and by Yeh [16], though their approach
ignores the placement of double bonds, so that by pay-
ing attention just to the r-electron structure the deve-
lopment parallels closely the classical case of what can be
done for alkanes ± now with restriction to degree-3 sites
and possibly with distinguishment of cis/trans arrange-
ments. Here we reformulate this work, taking into
account the placement of double bonds, so that enu-
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merations of the chemically relevant sub-classes of non-
radicals, mono-radicals, di-radicals etc. are obtained.
That the placement of double bonds (and also triple
bonds) may be explicitly taken into account has been
noted by Read [10] in a framework building more di-
rectly on Polya's work, but the results for polyenes (and
polyenoids) here are much more extensive. For the (non-
radical) conjugated polyenes, enumerations are here
made both distinguishing and not distinguishing cis/
trans structures around double bonds (as are commonly
isolatable). We view this separately from the problem of
cis/trans structures around single bonds (where the dif-
ferent conformations are often not separately isolated ±
the associated barriers to internal rotation being notably
less than for rotation about double bonds). Also we
count the average number of such conformations per
isomer. In the case of di-radicals a further re®nement is
here made in separate enumerations for what are iden-
ti®ed as singlet or triplet di-radicals (as judged by a
simple [17] yet seemingly fairly accurate graphical rule).
Thus the earlier enumeration work on polyenes is
notably extended in di�erent relevant manners.

Beyond such enumerations which might be consid-
ered ``classical'', we here treat average values for di�er-
ent properties of the various polyene classes. It is shown
how the same type of generating-function techniques
involved in enumeration can be extended to the com-
putation of average values of certain graph-theoretic
invariants as averaged over the members of a given
isomer class or subclass. Average graph-theoretic di-
ameters and average numbers of conformations per
isomer are computed; also (for the non-radical) case,
average counts of primary, secondary, and teritary car-
bons are made, as well as average values for di�erent
``types'' of single and double bonds. These average
graph-theoretic invariants are used in conjunction with
so-called ``group-function'' [18] or ``cluster-expansion''
[19, 20] ideas to obtain values for heats of formation,
indices of refraction, and magnetic susceptibilities aver-
aged over these same isomer classes or sub classes. Fi-
nally, the techniques are further extended to obtain
standard deviations over such classes for these proper-
ties. A variety of tabulated results for classes with up to a
few hundred billion members are reported. Such tabu-
lations of average values for properties then provide a
more thorough overview of the overall polyene class of
compounds and how di�erent properties vary. Com-
parison of the standard deviations within isomer classes
to the di�erences of averages between classes provides a
measure of a degree of distinction arising from the iso-
mer classi®cation. Finally, we investigate the asymptotic
behavior of isomer counts and isomer average properties
to get some insight on what happens at the many-atom
(high- polymer) limit.

The mathematical technique utilized for enumeration
and averages is that of ``generating functions''. Gener-
ally it is imagined that there is a given classi®cation of
isomers into classes C(a) where a is a class label. Then
the associated generating function is

P �t� �
X

a

#�a�ta �1�

where t is an ``indeterminate'' (or variable) and #�a� is
the number of members in the class C(a). Here a is often
the number N of atoms and the class C(N) is a set of
all N-atom isomers, with di�erent possibilities for the
de®nition of an isomer ± says as a structural isomer, or a
geometric isomer (paying attention to cis/trans arrange-
ments), or the ``polyenoid'' isomer classes of Cyvin et al.
[14, 15] and of Yeh [16]. However, in order to develop
useful formulas for the desired generating functions,
it turns out that auxiliary generating functions corre-
sponding to other subdivisions of such isomer-like
classes are appropriate to introduce. In some circum-
stances, derivatives of the generating functions and their
associated recursions are useful, particular in obtaining
average values for di�erent structural invariants and
properties. Some such general ideas may be found in
several combinatorics texts [21, 22], but the focus here
is within the context of some explicit chemical-isomer
examples, as we proceed with in the next section.

2 Non-radical acyclic conjugated polyene enumeration

The approach for enumerating isomer structures that is
based on the ``rooted tree'' concept is well known [6, 7,
9, 10, 14, 15], and provides an especially nice tool for
generating these structures via a recursion. A rooted tree
corresponds to a (non-cyclic) mono-radical species with
the radical site identi®ed as the root and considered as
having a dangling bond. The hydrogen atoms are
``deleted'', with the graphical structure corresponding
just to C atoms, CAC bonds, and C@C bonds. Now as
an example, in alkanes an N-site rooted tree may be
obtained from three smaller rooted a-, b-, c-site rooted
trees (Where a� b� c � N ÿ 1 and a; b; c � 0) by the
process indicated in Fig. 1. Once the rooted trees are
obtained, they are then joined together to form alkanes
as shown in Fig. 2.

2.1 Structural isomers

In this section we are concerned with the enumeration of
non-radical fully conjugated polyene (CNHN�2) isomers.

Fig. 1. The process of generation of an n-site rooted tree from
three smaller rooted a-, b-, and c-site rooted trees (where
a� b� c � nÿ 1) for alkanes

Fig. 2. The formation of an alkane structure using rooted trees
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A similar rooting procedure can be conveniently used
for such a purpose, where now the root might more
naturally be identi®ed to the dangling bond (rather than
a site) because there can be either a dangling single bond
or a dangling double bond. We begin here with the case
of structural isomers. The generating functions for such
rooted trees may be [23] built up, paying attention to the
rooted tree's generation number g, de®ned as the
number of (carbon) atoms in a longest path starting
from the root. The generating functions for rooted trees
of a given generation number g then are

Sg�t� �
X

N

Sg;N tN �2�

Dg�t� �
X

N

Dg;N tN �3�

where the coe�cient Sg;N represents the number of
single-bond-rooted �3-valent Kekulean trees of g
generations and N carbon atoms, and Dg;N is a number
of double-bond-rooted �3-valent Kekulean trees of g
generations and N atoms. In addition to the functions
above, use is also made of auxiliary generating functions
S<g�t� and D<g�t� that contain the contribution of all the
generating functions of a given type of generation less
than g:

S<g�t� �
X
g0<g

Sg0�t� �4�

D<g�t� �
X
g0<g

Dg0�t� �5�

Recursion relations for the generating functions are
easily constructed from considerations indicated in
Fig. 3:

Sg�1�t� � t
n

Sg�t�D<g�t� � S<g�t�Dg�t� � Sg�t�Dg�t�
o
�6�

Dg�1�t� � t
n

Sg�t�S<g�t� � Z� Sg; t�
o

�7�

where

Z�f ; x� � �1=2���f �x��2 � f �x2�� �8�

S<g�1�t� � S<g�t� � Sg�t�
and

D<g�1�t� � D<g�t� � Dg�t� �9�
Note that for the second term in Eq. (7) the form (1/2)
[�Sg�t��2 � Sg�t2�] is used instead of Sg�t�2 in order to
avoid the counting of the same isomers twice. The terms
of the form A-A enter the sum once while terms of the
form A-B enter the sum twice, so that by adding the
``symmetric'' term Sg�t2� representing A-A contributions
to Sg�t�2 and dividing the whole thing by two it is
ensured that every isomer is properly counted. The
initial conditions for the recursion relations are

S<1�t� � S0�t� � 1

and

S<0�t� � D<1�t� � D0�t� � 0 �10�
where the unity value in the ®rst equality represents the
dangling single bond from a hydrogen atom (g� 0). The
procedure for generating functions Sg�1�t� and Dg�1�t� is
illustrated in Fig. 4. Then the polyene structural isomers
are easily obtained by joining together the rooted trees
speci®ed above in a proper manner as indicated in
Fig. 5. Each of these structures (now unrooted trees) can
be either of diameter D � 2gÿ 1 or D � 2g, where
diameter D is de®ned as the longest distance in the walk

Fig. 3. Pictorial representation of the recursion relations for the
generating functions Sg�1 (with a dangling single bond) and Dg�1
(with a dangling double bond)

Fig. 4. The structures enumerated for rooted polyenes up to
generation g = 3. The absence of displayed structures for S1�t�
and D2�t� is because there are no such structures, and as
consequence S1�t� � D2�t� � 0

Fig. 5. Representation of recursions for generating functions P2g
and P2g�1 for conjugated polyenes of a given diameter
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along the bonds in the conjugated polyene structure
(unrooted tree). The center of a polyenoid structure is
either the central site of a diameter (if D is even) or the
cental bond of a diameter (if D is odd). The general form
that represents all polyenes of diameter D is

PD�t� �
X

N

PD;N tN �11�

where the coe�cient PD;N represents the count of N-atom
D-diameter Kekulean polyenes. Evidently the manner of
joining in Fig. 5 is di�erent depending on whether the
center of a polyene is a site or a bond, whence two
constructions for the generating functions PD�t� result:
P2gÿ1�t� � Z�Sg; t� � Z�Dg; t� �12�

P2g�t� � t
n
�D<g�t� � Dg�t�� � Z�Sg; t�

� Dg�t�Sg�t�S<g�t�
o

�13�
Finally, one obtains the structural isomer count for
polyenes by summing over all diameters:

P �t� �
X

D

PD�t� �14�

In applications, only D up to a given value are dealt with
and the corresponding PD�t� summed over. Nevertheless,
exact coe�cients #N for tN in P �t� are obtained for
smaller values of N, since for each N there is a maximum
value of D��N ÿ 1� which contributes to #N .

To make explicit enumerations one uses recursions
(6)±(9) to build up the auxiliary rooted-tree counting
polynomials, then consolidates these into polyene-
counting polynomials as in Eqs. (12)±(14). The result of
the structural isomer count for non-radical polyenes up
to N=44 is given in Table 1 (along with some results

developed in the next section). Although these counts are
not new (the book by Knop et al. [24] lists structural
isomer counts up to N=80), the case of structural iso-
mers (as the simplest one) is worked out in this section
both to demonstrate the technique of generating func-
tions in the enumeration of isomers, and to make the
overall analysis of polyenes presented in this manuscript
more complete. Furthermore, some results of this sec-
tion will be later used in the analysis of the asymptotic
behavior of these counts.

2.2 Geometric isomers

In the problem of enumerating the geometrical isomers
of polyenes there are two possibilities of interest: one can
distinguish cis/trans arrangements about the double
bond only, or one can distinguish cis/trans possibilities
about both single and double bonds in the conjugated
network. Cis/trans conformational transformations or-
dinarily being much more facile about single bonds (even
in conjugated networks) than double, we begin by
distinguishing just cis/trans about a double bond.

Much the same technique as used for the enumeration
of structural isomers can be applied for the enumeration
of geometric isomers as well, only with some simple
modi®cations. These modi®cations must re¯ect that cis
and trans arrangements across a C@C bond may be
di�erent (unless symmetry causes indistinguishibility
between them). One can proceed by assigning two ori-
entations for each Dg�t� generating function, and correct
for the symmetry whenever it is required. This symmetry
is associated with the re¯ection plane that is perpendic-
ular to the plane of the polyene network and that con-
tains the dangling double bond, whence the structures
(rooted trees) from Dg�t� that are symmetric with regard

to this plane we call symmetric, D�s�g �t�, and those that

are not we call asymmetric, D�a�g �t�. Then we can write
the generating function Dg�t� as consisting of two parts:

Dg�t� �
n

D�s�g �t� � D�a�g �t�
o

�15�

with recursion relations (yielding the term for g+1
generation):

D�a�g�1�t� � t
n
2Sg�t�S<g�t� � �Sg�t��2 ÿ Sg�t2�

h io
�16�

D�s�g�1�t� � t
n

Sg�t2�
o

�17�

Note that Dg
�a��t� contains a factor of 2 corresponding to

the two possible orientation for ``@ C'' of Fig. 3 (up and
down) in 2-D space. At the same time the recursion
relations for the Sg�t� term remain exactly the same as
we have had for structural isomers. Now, having the
generating functions Dg�t� and Sg�t�, it is easy to build
the polyene isomer structures. For the even-diameter
generating function P2g�t� representing polyene isomers
with a center site, we have

P2g�t� � f(term-1)� (term-2)� (term-3)g �18�

Table 1. Enumeration of conjugated polyene isomers

N Structural
isomers

Geometric
isomers (C@C)

h# conformationsiN

2 1 1 1.00
4 1 1 2.00
6 2 3 4.50
8 4 7 12.50
10 11 28 35.00
12 30 108 110.40
14 96 507 324.87
16 319 2431 965.79
18 1135 12441 2783.40
20 4150 65169 8024.34
22 15690 351156 22883.50
24 60506 1926372 65180.20
26 237853 10746856 185019.32
28 948455 60762760 524787.44
30 3831226 347664603 1486698.24
32 15642947 2009690895 4209746.92
34 64484774 11723160835 11914179.69
36 268055006 68937782355 33708741.50
38 1122646262 408323575275 95345651.97
40 4733357618 2434289046255 269632735.19
42 20078203381 14598013278960 762375144.51
44 85637471487 88011196469040 2155281381.83
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where

(term-1) � t
n

Dg�t�Sg�t�S<g�t�
o

�19�

(term-2) � t�1=2�
n

Dg�t��Sg�t��2 � D�s�g �t�Sg�t2�
o

�20�

(term-3) � t�1=2�
n

D<g�t��Sg�t��2 � D�s�<g�t�Sg�t2�
o

�21�
Here, (term-1) represents those even-diameter structure
where the diameter must go through the double bond
attached to the central site and can only go through one of
the single bonds attached to this central site; (term-2)
represents the circumstance where the three branches
from the central site are all of the same length (g), so that
there are three possible choices for how a diameter passes
through the center; (term-3) represents the case that a
diameter must pass through the two single bonds at that
site. Similarly, for the odd-diameter polyene generating
function P2gÿ1�t�, where the center is a bond, we have

P2gÿ1�t� � (term-I)� (term-II)

� (term-III)� (term-IV) �22�
where

(term-I) � Z�D�s�g ; t� �23�

(term-II) � �1=2� Z�D�a�g ; t� �24�

(term-III) �
n
�1=2�D�s�g �t�D�a�g �t�

o
�25�

(term-IV) � Z�Sg; t� �26�
Above, (term-I) represents the structures that are
symmetric about C@C bond (above and below) and
the second term is added (followed by multiplication by
1/2) to count terms of the form A/A@A/A and A/A@B/
B (``@'' is a double bond here) just once. For (term-II),
representing the contribution of structures that are
asymmetric about ``C@C'' bond (above and below),
the ®rst sub-term counts isomers of the type A/B@C/D
as two di�erent structures and those of the type A/B@A/
B as only one structure, so that we must add the second
sub-term to obtain correct cis/trans isomer count. Next,
(term- III) counts the isomers of the type A/A@B/C only
once. Finally, (term-IV) for ``CAC'' bond centres has the
same form as that for the structural isomers.

Next, the enumeration of geometric isomers that
represent cis/trans arrangements about both single
(CAC) and double (C@C) bonds is a straightforward
extension of the technique just used for enumerating
geometric isomers for cis/trans arrangements about a
C@C bond only. Thus, we do not provide the details but
just list the ®nal expression. The recursion relation for
Sg�1�t� term is

Sg�1�t� � �2t�
n

Sg�t�D<g�t� � S<g�t�Dg�t�

� Sg�t�Dg�t�
o

�27�

where Dg�t� � fD�s�g �t� � Dg
�a��t�g and the recursion rela-

tions for that are given by Eqs. (16) and (17). The
generation of the geometric isomers in this case is quite
straightforward. In particular, for the generating func-
tion P2g�t� with a center site we have

P2g�t� � f(term-1)� (term-2) � (term-3)g �28�
where

(term-1) � t
n

Dg�t�Sg�t�S<g�t�
o

�29�

(term-2) � t�1=2�
n

Dg�t��Sg�t��2 � D�s�g �t�Sg�t2�
o

�30�

(term-3) � t�1=2�
n

D<g�t��Sg�t��2 � D�s�<g�t�Sg�t2�
o
�31�

Similarly, for the generating function P2gÿ1�t� with a
center bond we have

P2gÿ1�t� � (term-I) � (term-II)

� (term-III)� (term-IV) �32�
where

(term-I) � Z�D�s�g ; t� �33�

(term-II) � �1=2� Z�D�a�g ; t� �34�

(term-III) � �1=2�D�s�g �t�D�a�g �t� �35�
(term-IV) � �1=2� Z�Sg; t� �36�
Finally, one obtains the geometric isomer count for a
given N by summing over all diameters (at least up to the
diameter after which there is no contribution in the
count for the desired N in the polynomial series):

P �t� �
X

D

PD�t� �37�

The results for the enumeration of two kinds of
geometric isomers for polyenes up to N � 44 are given
in Table 1. Here the geometric isomer counts for cis/
trans arrangements around a C@C bond only are given
explicitly, while the counts of cis/trans arrangements
about both single and double bonds are used to compute
the mean number of conformations per isomer, h#confiN ,
identi®ed as

h#confiN � �#�geo�N �=�#�str�N � �38�
where �#�geo�N � is the ``isomer'' count distinguishing
rotation about both C@C and CAC bonds, and
�#�str�N � is the N-atom structural isomer count.

3 Radical (and poly-radical) polyenoid enumeration

The work by Cyvin et al. [14, 15] and Yeh [16] provided
a nice result for the enumeration of acyclic polyenoid
structural isomers, such as including both the non-
radical polyenes as well as related radical species without
separating them. The natural next questions of chemical
interest are: what portions of these counts are due to
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radicals? Or, more generally, what portions of N-carbon
isomer structures are due to the radicals of the n th
degree? Or, what is the average degree of radicalicity?
Or, what proportions of di�erent radical species have
di�erent overall spin multiplicities? We seek answers to
such questions in this section.

3.1 Enumeration of poly-radicals

The technique of generating functions used in the
previous sections provides a nice tool for answering
these questions in a relatively straightforward manner,
only in this case we deal with the polynomial functions

F �t; s� �
X
N ;n

#N ;ntN sn �39�

containing two variables, variable t (for carbon atoms)
and variable s (for the degree of ``radicality''). Here the
coe�cient PN ;n represents the count of polyenoid isomers
that have N carbons in the structure (rooted or unrooted
tree) and have a degree n of ``radicality''. Similar
notational symbols are used for our generating functions,
although they do not have precisely the same meaning as
before. Again, we start by specifying the generating
functions representing the structures with dangling
bonds (rooted trees), for the single bond, Sg�t; s�, and

for the double bond, Dg�t; s�. In building a (g+1)-
generation structure out of two lower generation struc-
tures by connecting them to a single carbon center, the
total number of radical sites can remain unchanged or
increase depending on the bond character of these two
structures. We de®ne generating functions and give the
recursion relations as indicated in Fig. 6. For a dangling
single-bond structure polynomial Sg�1�t; s� we have
Sg�1�t; s� � (term-1)� (term-2) �40�
where

�term-1) � t
n

Sg�t; s�D<g�t; s� � S<g�t; s�Dg�t; s�

� Sg�t; s�Dg�t; s�
o

�41�

(term-2) � �ts�
n
�1=2���Dg�t; s��2 � Dg�t2; s2��

� D<g�t; s�Dg�t; s�
o

�42�
For a double-bond polynomial, the recursion relations
are (Fig. 6)

Dg�1�t; s� � t
n
�1=2���Sg�t; s��2 � Sg�t2; s2��

� S<g�t; s�Sg�t; s�
o

�43�

Fig. 6. Pictorial representation
of computational schemes for
the generating functions
Sg�1�t; s�; Dg�1�t; s�; P2gÿ1�t; s�,
and P2g�t; s� relevant for the
enumeration of polyenoids with
varying degrees of radicality.
The function arguments t and s
are suppressed for the sake of
brevity
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Note that the symbol �Sg or Dg� for the generating
functions above is not very important; the real signi®-
cance lies in the way we build the polyenoids out of
them, i.e. in this process we must sure that all
possibilities are taken into account and none of the
isomer structures are repeated in the enumeration. As in
the previous sections, each polyenoid has either a center
bond or a center site (see Fig. 6). For the even-diameter
generating function involving a central site

P2g�t; s� � (term-I) � (term-II)

� (term-III)� (term-IV) �44�
where

(term-I) � �ts�
n
�1=6���Sg�t; s��3

� 3Sg�t2; s2�Sg�t; s� � 2Sg�t3; s3��

� S<g�t; s��1=2�
���Sg�t; s��2 � Sg�t2; s2��

o
�45�

(term-II) � t
n

Dg�t; s�Sg�t; s�S<g�t; s� � �Dg�t; s�

� D<g�t; s�� � �1=2�
��Sg�t; s��2 � Sg�t2; s2�

�o
�46�

(term-III) � �ts�
n

Sg�t; s�Dg�t; s�D<g�t; s� � �Sg�t; s�
� S<g�t; s���1=2���Dg�t; s��2

� Dg�t2; s2��
o

�47�

(term-IV) � �ts2�
n
�1=6���Dg�t; s��3 � 3Dg�t2; s2�Dg�t; s�

� 2Dg�t3; s3�� � D<g�t; s��1=2���Dg�t; s��2

� Dg�t2; s2��
o

�48�
Note that in the expressions above we write, for example,
(1/2) [�Sg�t; s��2 � Sg�t2; s2�] instead of �Sg�t; s��2 in order
to avoid counting structures of the form A-B and B-A as
distinct, and so on (e.g. see [23] for details). Similarly, for
the odd-diameter generating function involving a central
bond

P2gÿ1�t; s� �
n
�1=2���Sg�t; s��2 � Sg�t2; s2�� � �1=2���Dg�t; s��2

� Dg�t2; s2�� � s�Dg�t; s�Sg�t; s��
o

�49�
The graphical representation of the terms listed above is
given in Fig. 6. Finally, one obtains the structural isomer
count for given N and n by summing over all diameters
[at least up to the diameter Dmin�N ; n�, after which there
is no contribution in the count for these N and n in the
polynomial series]:

P �t; s� �
X

D

PD�t; s� �50�

Table 2 contains the computational result of these
enumerations (omitting the zero th degree polyenoids

that constitute the non-radical isomers) up to N� 30
and n� 10. The summation of all n th order radical
counts (from 0 to n� 10) for a given N produces the
total number of structural isomers reported by Yeh
[16]. It is evident that the fraction of non-radical
isomers in polyenoids falls quite rapidly (in fact,
exponentially in the many-atom limit, as will be shown
later on in the asymptotics section) with increasing
N. At the end of the next subsection (in Table 3) we
report some additional (average) characteristics of these
radicaloid polyenoids.

3.2 Spin multiplicity for di-radical isomers

Although di-radical species in general exhibit a higher
reactivity compared to non-radical species, di-radicals
have received considerable attention in organic chemis-
try, as evidenced in the book edited by Borden [25]. Now
such di-radical species can be of di�erent ground-state
spin multiplicity. It appears [17] that if for the di-radical
structure the two unpaired electrons are located at
carbon sites which are ``alike'' in that either both are
``starred'' (��) or both are ``unstarred'' (00), then the
electronic ground state for that structure is triplet,
whereas if these unpaired sites can be characterized as
unlike ``starred-unstarred'' (�0), then the ground state is
expected to be a singlet. Thus, for a given number N of
carbons it is of interest to enumerate di-radical struc-
tures that have triplet ground states and, separately,
those that have singlet ground states. This is accom-
plished by enumerating all structures for a given N that
are like ��� � 00� and those that are unlike (�0). To
achieve this count we ®rst obtain the total number of di-
radical structures and the di�erence between the number
#N ���� of like and the number #N ��0� of unlike. The
starting point of the analysis is to select a single carbon-
center as the reference point for determining the
character of the structure (unrooted tree) or substructure
(rooted tree). In the generation of the substructures of
(g+1)-generations with dangling bonds it is convenient
to choose the carbon center to which one attaches the
substructures of generation g �or <g� as the reference
point. By convention we identify a sign ``+'' to a
substructure if the reference center and the unpaired
electron site are like (��), otherwise [i.e. if we have unlike
(�0) sites] the sign ``ÿ'' is assigned. The addition of all
contributions to the generating function [Sg�t� or Dg�t�]
gives the di�erence: D � #���� ÿ#��0�. Finally, at the
stage the isomer structures are constructed all we need to
do is keep track of the relative character of the sites
being joined. The situation depends on whether the
isomer structure has a center bond or a site.

The starting point is to specify the generating func-
tions and recursion relations for structures with dangling
single and double bonds [Sg�t� and Dg�t�]. The degree of
radicality n, now ranging from 0 to 2, is speci®ed with an

appropriate superscript: for example, S�0�g �t�; S�1�g �t�,
S�2�g �t� represent generating functions for structures with
a dangling single bond and n = 0, 1, or 2 unpaired
electrons [similarly for Dg�t�]. The recursion relations for
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these generating functions are indicated by the con-
structions of Fig. 7, though here we omit the non-radical
case. For Sg�t� with n = 1 one obtains

S�1�g�1�t� � rt
n
�S�0�g �t�D�1�<g�t� � S�0�<g�t�D�1�g �t�

� S�0�g �t�D�1�g �t�� � �S�1�g �t�D�0�<g�t�
� S�1�<g�t�D�0�g �t� � S�1�g �t�D�0�g �t��

� �D�0�g �t�D�0�<g�t� � Z�D�0�g ; t�
o

�51�
For n = 2 we have

S�2�g�1�t� � t
n
�S�0�g �t�D�2�<g�t� � S�0�<g�t�D�2�g �t�

� S�0�g �t�D�2�g �t�� � �S�2�g �t�D�0�<g�t�
� S�2�<g�t�D�0�g �t� � S�2�g �t�D�0�g �t��
� �S�1�g �t�D�1�<g�t� � S�1�<g�t�D�1�g �t�
� S�1�g �t�D�1�g �t�� � �D�1�g �t�D�0�<g�t�
� D�1�<g�t�D�0�g �t� � D�1�g �t�D�0�g �t��

o
�52�

For a dangling double bond we have:

D�1�g�1�t� � rt
n

S�1�g �t�S�0�<g�t� � S�1�<g�t�S�0�g �t�

� S�1�g �t�S�0�g �t�
o

�53�

and

D�2�g�1�t� � t
n
�S�0�g �t�S�2�<g�t� � S�0�<g�t�S�2�g �t�

� S�0�g �t�S�2�g �t�� � �S�1�g �t�S�1�<g�t� � Z�S�1�g ; t��
o

�54�

Next, polyenoid isomers for di-radicals can be con-
structed (see Fig. 7) by obtaining P �2�2g (t) and P �2�2gÿ1�t�
polynomial functions for diameters D � 2g and D �
2gÿ 1, correspondingly

P �2�2gÿ1�t� �
n
�S�0�g �t�S�2�g t � rZ�S�1�g ; t�� � �D�0�g �t�D�2�g �t�

� rZ�D�1�g ; t�� � rD�0�g �t�S�1�g �t� � D�1�g �t�S�0�g �t�
o

�55�
and

P �2�2g �t� � f(term-I)� (term-II)

� (term-III)� (term-IV)g �56�
where

(term-I) � rt
n
�S�1�<g�t� � S�1�g �t�� � Z�S�0�g ; t�

� �S�0�<g�t�S�0�g �t�S�1�g �t��
o

�57�

Table 2. Enumeration of n-fold radicals of polyenoids

N/n 1 2 3 4 5 6 7 8 9 10

1 1
2
3 1
4 1
5 2
6 2
7 5 1
8 7
9 14 4
10 24 2
11 45 21
12 95 10
13 159 103 3
14 385 71
15 582 524 26
16 1644 441 6
17 2238 2627 233
18 7111 2701 73
19 8836 13195 1802 13
20 31383 15905 795
21 35691 65906 12991 208
22 139794 91610 7246 31
23 146638 328276 88118 2702
24 628385 516077 59993 618
25 611162 1629366 572419 28612 73
26 2842003 2860409 459106 9303
27 2576518 8065525 3590739 267580 1867
28 12922947 15633343 3318400 111663 194
29 10969176 39825133 21913766 2281608 32067
30 59011164 84473620 22918778 1163875 5761
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(term-II)

� t
hn
�D�2�<g�t� � D�2�g �t�� � Z�S�0�g ; t�

� �D�2�g �t�S�0�g �t�S�0�<g�t��
o

�
n
�D�0�g �t�S�2�g �t�S�0�g �t�� � �D�0�<g�t�S�2�g �t�S�0�g �t��

� �D�0�g �t�S�2�<g�t�S�0�g �t�� � �D�0�g �t�S�2�g �t�S�0�<g�t��
o

�
n
�D�1�g �t�S�1�g �t�S�0�g �t�� � �D�1�<g�t�S�1�g �t�S�0�g �t��

� �D�1�g �t�S�1�<g�t�S�0�g �t�� � �D�1�g �t�S�1�g �t�S�0�<g�t��
o

�
n
�D�0�<g�t� � D�0�g �t�� � Z�S�1�g ; t�

� �D�0�g �t�S�1�g �t�S�1�<g�t��
oi

�58�

(term-III)

� t
hn
�S�1�<g�t� � S�1�g �t�� � Z�D�0�g ; t�

� �S�1�g �t�D�0�g �t�D�0�<g�t��
o
�
n
�S�0�g �t�D�1�g �t�D�0�g �t��

� �S�0�<g�t�D�1�g �t�D�0�g �t�� � �S�0�g �t�D�1�<g�t�D�0�g �t��
� �S�0�g �t�D�1�g �t�D�0�<g�t��

oi
�59�

and

(term-IV)

� t
h
�1=6�

n
�D�0�g �t��3 � 3�D�0�g �t2��D�0�g �t��

� 2�D�0�g �t3�
o
� D�0�<g�t� � Z�D�0�g ; t�

i
�60�

Above, the symbol r can assume only two values: ``+1''
and ``)1''. In particular, the choice of the sign r � ÿ1
leads to the ``di�erence'' generating functions yielding
the counts D � f#���� ÿ#��0�g, while the use of
r � �1 leads to total counts #di � f#���� �#��0�g of
di-radicals. Also, the symbol Z[ f ; t] has a slightly
di�erent form than that used in the previous sections.
Here one has

Z�f ; x� � �1=2�� �f �x��2 � jf �x2�j � �61�
where term jf �x2�j indicates that the polynomial coe�-
cients#2N for x2N in f �x2� are equal to the absolute values
of the coe�cients #N for xN in f �x� function. Equations
(51)±(60) thence allow us to obtain the desired results.

Finally, the summation over all diameters yields the
desired enumerative generating functions for di-radicals:

P �D; t� � P �2��D; t� �
X

D

PD�D; t� �62�

and

P �t� � P �2��t� �
X

D

PD�t� �63�

The numerical results are listed in Table 3, where also
are reported at each N the fraction of the polyenoids

Table 3. Some characteristics of structural isomers of polyenoids

N # Triplet
diradicals

# Singlet
diradicals

Non-radical
Fraction

á#uñN

1 1.000
2 0 0 1.000 0.000
3 0 1.000
4 1 0 0.500 1.000
5 0 1.000
6 1 1 0.500 1.000
7 0 1.333
8 5 2 0.364 1.273
9 0 1.444
10 15 9 0.297 1.514
11 0 1.636
12 62 33 0.222 1.704
13 0 1.823
14 238 147 0.174 1.909
15 0 2.018
16 1014 630 0.132 2.111
17 0 2.213
18 4278 2833 0.103 2.311
19 0 2.412
20 18659 12724 0.079 2.511
21 0 2.612
22 81900 57894 0.062 2.712
23 0 2.812
24 364214 264171 0.048 2.912
25 0 3.013
26 1630372 1211631 0.037 3.114
27 0 3.214
28 7350161 5572786 0.029 3.315
29 0 3.416
30 33304028 25707136 0.022 3.517
31 0 3.618
32 151601642 118853791 0.017 3.719
33 0 3.820
34 692702427 550654222 0.013 3.921
35 0 4.022

Fig. 7. Pictorial representation of the computational schemes for
the six generating functions relevant in the enumeration of di�erent
types of di-radical polyenoids
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which are not radicals and the mean number h#uiN of
unpaired electrons in each polyenoid. The non-radical
fractions at each odd N are of course 0, and are not
listed. However, for even N one sees the fraction which
are not radicals (i.e., the fraction which are stable
species) rapidly decreases. Moreover, the predominantly
radical species become on-the-average ever higher-order
radicals (i.e., with ever more radicaloid unpaired elec-
trons per polyenoid structure) as N increases. That is, for
the most part the polyenoids should be quite highly
reactive, and for most of the remaining discussion we
focus on the ``stable'' polyenes.

4 Recursive property computation

Very little seems to have previously been done with
average characteristics of isomer classes of molecular
structures. Here we ®rst develop some methodology to
obtain such averages for several graph invariants, and
second we consider the usage of these graph-invariant
averages to estimate averages for a few selected molec-
ular properties, restricting ourselves only to structural
isomers of conjugated polyenes.

4.1 Averages for graph invariants

First we consider the approach for counting carbon
centers of di�erent types: primary, secondary, and
tertiary. Now, the generating functions Gg�t; a; b; c�
representing rooted and unrooted trees include the
dependence also on the number of carbon center type.
Here variable a represents ``@Ch''; b is for ``@CA'', and c
is for type ``@C'' centers. Instead of using a standard
technique, one can simplify the procedure of enumera-
tion of di�erent-type carbon centers by taking the ®rst
derivative of the generating function Gg�t; a; b; c� by the
variable, say a, and then set all of the variables a; b, and
c to unity, thus obtaining the desired count of a-type
centers in Gg�t�, i.e. function G�a�g �t; a; b; c � 1� � G�a�g �t�
where the superscript (a) marks the ®rst derivative by the
a variable.

The recursion relations for generating functions
Gg�t; a; b; c� representing structures with dangling bonds
(rooted trees) are

Sg�1�t; a; b; c� � ta
n

Sg�t�D<g�t� � S<g�t�Dg�t�

� Sg�t�Dg�t�
o
� tb

n
SHDg�t�

o
�64�

Dg�1�t; a; b; c� � ta
n

Sg�t�S<g�t� � Z�Sg; t�
o

� tb
n

SHSg�t�
o

�65�
[abbreviating the function arguments (t; a; b; c) to just t].
The functions S<g�1�t� and D<g�1�t� are obtained much
as in Eq. (9), the symbol SH � 1 represents a dangling
single bond to an H atom, and the current initial
conditions are

S<1�t� � D<1�t� � S1�t� � 0

and

D1�t� � c �66�
For the generating functions PD�t� for polyene isomers
we have:

P2gÿ1�t� � Z�Sg; t� � Z�Dg; t� �67�

P2g�t� � t
n
af�D<g�t� � Dg�t�� � Z�Sg; t�

� Dg�t�Sg�t�S<g�t�g � bfDg�t�Sg�t�SHg
o
�68�

for center-bond and center-site structures, respectively.
Now, taking the derivatives by the selected variable
n�n � a, or b, or c) provides us with the necessary
generating functions for enumeration of the carbon cen-
ters of the type n. This time dealing with the ®rst deriv-
atives PD

�n��t; a; b; c � 1� � PD
�n��t� and maintaining only

one variable t, one proceeds further in the essentially
identical manner as we did before with functions PD�t�.
Finally, the summation over all diameters

P �n��t; a; b; c � 1� � P �n�D �t� �
X

D

P �n�D �t; a; b; c � 1� �69�

provides us with the desired count.
On the other hand, the alternative way is to consider

the generating functions as depending on two variables
t and a (instead of only a single variable t as in the case
above) at a time, say Gg�t; a�, and setting the remaining
variables to unity from the very beginning. Then, the
polynomial generating functions are, for rooted trees

Gg�t; a� �
X

g

G�N ;n�g tNan �70�

and for unrooted trees

PD�t; a� �
X

D

PD
�N ;n�tNan �71�

where the situation becomes mathematically identical to
that in Sect. 3.1. Next, taking the ®rst derivative of
Gg�t; a� with respect to the variable a;G�a�g �t; a�, and
setting a � 1, the addition of all terms for each N gives
us the count of the carbon centers of type a for
generation g. The same applies to unrooted-tree func-
tions PD�t; a� for the diameter D.

For standard deviation r values we also need second
derivatives of the generating functions Gg

�a;a��t; a��
or

PD
�a;a��t; a��, which are obtained in a similar manner,

only this type di�erentiating the functions Gg�t; a�
�

or
PD�t; a�� twice with respect to the variable a. The mean
counts of n-type carbon centers, h#�n�iN , are obtained
by dividing the total number of n-type carbon centers for
a given N (summed over all isomers for a particular D,
and then over all diameters D) by the total count of
structural isomers of polyenes for N , #N . Also, for the
structural isomers we compute the mean diameter for the
isomer classes labeled by N as

hDiN �
X

D

�D �#N �D��=
X

D

#N �D� �72�
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where the sum is over all diameters that give a non-zero
contribution to #N �D�. Finally, for the standard devi-
ation rN �#�n�� we have:

rN �#�n�� �
n
h#�n�2iN ÿ �h#�n�iN �2

o1=2

�73�
where

h#�n�2iN �
X

D

n
�PD
�n;n��N ; #�n��

h
� PD

�n��N ; #�n���n�1
i
=#N

o
�74�

The computed data are listed in Table 4. As expected,
the diameter and the atom-type counts all increase with
the number N of carbons. The corresponding standard
deviations seem to increase more slowly. More quanti-
tative statements of the leading functional dependencies
are addressed in Sect. 5.

4.2 Averages for molecular property estimates

Next, the estimates of some mean properties of non-
radical polyenes are sought. This is done by computing
the mean characteristics of the structural isomers such as
the types of carbon centers or types of bonds and
utilizing the ``group contribution'' (or ``cluster expan-
sion'') scheme as suggested by Cohen and Benson [26]
for the heats of formation DHf at T � 298 K, by Vogel
et al. [27] for the molar refractive indices Mn�20�D , and by
Schmalz et al. [20] for magnetic susceptibilities vm. In all
these cases for a property X having a value X �G� for a
molecular structure graph G we presume an expansion

X �G� �
X

c

X s�c� #�c; G� �75�

where #�c; G� is the number of substructures of type
c occurring in G, and X s�c� is a property-dependent

expansion parameter. The c-sum is limited to a subset of
substructures, and presumably if extended to su�ciently
large substructures would yield accurate results. In the
present case, accurate results are evidently attainable
with the limitation of the substructures c to just di�erent
``types'' of C atoms in the H-deleted structures G. Here
these types simply refer to the numbers n of adjacent C
atoms, this number being n � 1 (@C), n � 2 (@CA), or
n � 3 (@Ch).

Actually the contribution for the molar indices of
refraction are not directly of the same form in Vogel et al.
[27], where the full graph including H atoms is imagined
and the only substructural contributions are for atoms
(C and H) and double bonds (C@C). Then evidently for
our current polyenes

#�C� � #�@C� �#�@CA� �#�@Ch�
#�H� � 2#�@C� �#�@CA�
#�C@C� � #�@C� �#�@CA� �#�@Ch�f g=2 �76�
so that the current cluster-expansion coe�cients may be
expressed in terms of those of Vogel et al. [27]:

Mn�20�
s

D �@C� � Mn�20�
s

D �C� � 2Mn�20�
s

D �H�
� �1=2�Mn�20�

s

D �C@C�
Mn�20�

s

D �@CA� � Mn�20�
s

D �Mn�20�
s

D �H�
� �1=2�Mn�20�

s

D �C@C�
Mn�20�

s

D �@Ch� � Mn�20�
s

D �C� � �1=2�Mn�20�
s

D �C@C� �77�

Table 4. Mean characteristics
of conjugated polyene isomersa N áDñN á#tñN á#sñN á#pñN

2 1.00 � 0.00 0.00 � 0.00 0.00 � 0.00 2.00 � 0.00
4 3.00 � 0.00 0.00 � 0.00 2.00 � 0.00 2.00 � 0.00
6 4.50 � 0.50 0.50 � 0.50 3.00 � 1.00 2.50 � 0.50
8 5.75 � 0.83 1.00 � 0.71 4.00 � 1.41 3.00 � 0.71
10 6.91 � 1.08 1.55 � 0.78 4.91 � 1.56 3.55 � 0.78
12 8.03 � 1.17 2.03 � 0.84 5.93 � 1.67 4.03 � 0.84
14 9.07 � 1.33 2.56 � 0.90 6.87 � 1.80 4.56 � 0.90
16 10.04 � 1.46 3.08 � 0.95 7.84 � 1.90 5.08 � 0.95
18 10.97 � 1.61 3.60 � 1.00 8.79 � 2.01 5.60 � 1.00
20 11.85 � 1.74 4.12 � 1.05 9.75 � 2.11 6.12 � 1.05
22 12.71 � 1.87 4.65 � 1.11 10.70 � 2.21 6.65 � 1.11
24 13.52 � 1.99 5.17 � 1.15 11.66 � 2.31 7.17 � 1.15
26 14.31 � 2.11 5.70 � 1.20 12.61 � 2.40 7.70 � 1.20
28 15.07 � 2.23 6.22 � 1.25 13.56 � 2.50 8.22 � 1.25
30 15.81 � 2.34 6.75 � 1.29 14.51 � 2.58 8.75 � 1.29
32 16.53 � 2.45 7.27 � 1.33 15.46 � 2.67 9.27 � 1.33
34 17.23 � 2.56 7.80 � 1.38 16.41 � 2.75 9.80 � 1.38
36 17.90 � 2.67 8.32 � 1.42 17.36 � 2.83 10.32 � 1.42
38 18.57 � 2.77 8.85 � 1.46 18.31 � 2.91 10.85 � 1.46
40 19.21 � 2.87 9.37 � 1.49 19.26 � 2.99 11.37 � 1.49
42 19.84 � 2.97 9.90 � 1.53 20.21 � 3.06 11.90 � 1.53
44 20.46 � 3.07 10.42 � 1.57 21.15 � 3.13 12.42 � 1.57

a Each entry represents the quantity áYñN � rN, where rN = a standard deviation

X s @C @CA @Ch Units Ref.

1. Mn�20�
s

D 17.555 20.115 22.675 g/mol [27]
2. DH s

f 6.27 8.55 10.19 kcal/mol [26]
3. vs

m 10.265 7.055 4.365 )10)13 J/G2 mol [20]
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To determine the refractive indices n�20�D one devides
Mn�20�D by the molecular weight of the compound
�CNHN�2�.

Next we obtain the mean properties of non-radical
polyenes by adding the products of h#�n�iN and X s�n�
for atom type n and obtain isomer-averaged property
estimates

hX iN �
X

n

n
�h#�n�iN � X s�n��

o
�78�

with X s values from the above tabulation.
Finally, we also compute the standard deviation r for

the mean characteristics and properties of non-radical
polyenes to get some insight on how the properties of
di�erent classes of isomers labeled by N di�er from each
other. Note that for the average values of Mn�20�D the
standard deviations r are 0, since in the group function
scheme utilized here every isomer within the isomer class
labeled by N has the same value of Mn�20�D , and the values
Mn�20�D are di�erent for di�erent isomer classes. This
implies that there is no overlap between di�erent isomer
classes for Mn�20�D . The computed results for the three
considered properties are plotted in Figs. 8±10. There the
mean values are connected by a curve. In Figs. 8 and 9
points above and below these mean values are displaced
up and down by one standard deviation.

5 Isomer asymptotics

Asymptotic behaviors of isomer counts or isomer
properties do not seem to have been previously consi-
dered for conjugated polyenes and polyenoids, though
asymptotics for alkane isomer counts have (e.g. see
paper by Polya [8, 9] and Otter [28]). Though these
particular mathematical arguments presumably extend
to isomer counts for conjugated polyenes and poly-
enoids, we here take a slightly di�erent approach which

seems to us more readily understandable. We focus on
asymptotics of polyenoid structural isomer counts as
well as those for structural and geometric isomers of
polyenes. Besides the isomer counts for a given N , the
asymptotic behavior of certain properties that are
averaged over all conformations seem to be of chemical
interest as well. Such properties considered here are: the
average diameter hDiN , the mean number of primary
(``@C''), secondary (``@CA''), and tertiary (``@Ch'')
carbon centers per (structural) isomer; also, the mean
number of conformations per (structural) isomer
h#confiN de®ned as the ratio of geometric isomer count
to that of structural isomer; non-radical fraction of
polyenoids; and the mean number of radical (unpaired
electrons) sites per isomer h#uiN as N !1.

5.1 Asymptotic forms

The method used to deduce the asymptotic forms for
isomer counts and isomer properties mentioned above
can be understood on the basis of the following line of

Fig. 8. The graphical representation of hDHfi data

Fig. 9. The graphical representation of hvmi data

Fig. 10. The graphical representation of hn�20�D i data
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thought. We begin with the simpler polyenoid case. For
the structural isomers the generating function for rooted
polyenoids

/�t� �
X
g�0

/g�t� �
X
N�0

#N tN �79�

exhibits the recursion:

/�t� � 1� �t=2�f�/�t��2 � /�t2�g �80�
It is evident that the function /�t� increases mono-
tonically for t > 0. Furthermore, from Eq. (79) it is seen
that /�t� represents a convergent series in t if the t-
variable is su�ciently small and the series diverges for
su�ciently large values of t. Thus, there must exist some
critical value tc (t-critical in the range 0 < t < 1) such that
for any t > tc the function/�t� diverges, and for any t < tc
the function /�t� converges. Now, de®ning the form

F �x� � a� bx2 �81�
one sees that Eq.(80) can be viewed as /�t� � F �/�t��
when Eq. (81) one takes a � 1� �t=2�/�t2� and b=t/2.
In Eq. (80) we incorporate the functional dependence of
/�t� on t-variable near tc into the putative ``constant'' a,
since for t < 1 one has �tc�2 < tc and with t near tc the
function /�t2� is well behaved, in the sense that /�t2� can
be expanded in a nice low-order Taylor series expansion
as t ! tc:

Now, for a simultaneous plot of y � F �x� and y � x,
as in Fig. 11, with the constants a and b indicated above,
a solution is obtained for /�t� as an intersection of these
two curves. Indeed, it is the ®rst point of intersection.
Furthermore, from Fig. 11 it is evident that as t-variable
increases towards tc, the curve y � F �x� moves upwards
until there is no intersection with y � x, whence there is
no simultaneous solution for y � F �x� and y � x, indi-
cating that t has exceeded tc. Thus, t � tc corresponds to
the situation where the curves y � F �x� and y � x just
touch at a single point, as in Fig. 11, thereby yielding a
unique solution / � /�tc�. Evidently at this critical point
dF �x�=dx � 1 and 1 � 2bc/c �82�
where bc is the b-constant value at t � tc.

To obtain a quantitative description of how /�t� varies
with t near tc we introduce deviations (from critical val-
ues): d � tc ÿ t and e � /c ÿ /�t�. Then via Taylor ex-
pansion at t � tc, one (restricting to low-order terms) has

a � ac ÿ a0d� O�d2� �83�
b � bc ÿ b0d �84�
where the ®rst derivatives are a0 � �1=2�f/�t2c� � 2�t2c�
/0�t2c�g and b0 � 1=2. For / one has (omitting higher-
order terms)

/�t� � /c ÿ e � �ac ÿ a0d� � �bc ÿ b0d��/c ÿ e�2 �85�
After straightforward mathematical manipulation, not-
ing that /c � ac � bc/

2
c and keeping in mind Eq. (82),

while leaving out the higher terms, one obtains

e2 � f�a0 ÿ b0/2
c�=bcgd �86�

which indicates that

e � C�d�1=2 �87�
with of course C � f�a0 ÿ b0/2

c�=bcg1=2. Now, keeping in
mind Eq. (79), it is evident that the behavior of /�t� near
tc leads to asymptotic behavior for coe�cients #N
(counts of rooted trees). In particular, if we assume that
the asymptotic behavior of #N is described by the form

#N � NÿajN
n

A� BNÿ1 � O�Nÿ2�
o

�88�
then with restriction to the ®rst two terms, one obtains

/�t� � 1�
X
N�1
f#N ÿ �A� BNÿ1�gNÿajN tN

� A
X
N�1

NÿajN tN � B
X
N�1

Nÿ1ÿajN tN �89�

Fig. 11 a±c. Three possible types of result obtainable in analyzing
for the critical behavior of /�t�. In a t < tc, in b t � tc, and in c t > tc
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From this it is evident that the convergence of the series
/�t� is equivalent to the requirement that t � �1=j�,
implying that tc � 1=j: Furthermore, the ®rst summa-
tion terms gives a ®nite value (given a > 0), and the
remaining summations can be estimated using the
Euler-McLaurin Formula, replacing these sums by the
integrals over N . These integrals are of the general form
[keeping in mind that t � tc ÿ d � tc�1ÿ jd��:

I �
Z1
0

Nb�1ÿ c�N dN

� �c�ÿbÿ1
Z1
0

xbeÿxdx

� �b!�cÿbÿ1 �90�
where c � jd and x � jdN ; whence one obtains

I � �b!� jÿbÿ1 dÿbÿ1 �91�
Thus, as t! tc (approaching from below) we have

/�t� � constant� A�ÿa!�jÿaÿ1 dÿaÿ1

� B�ÿ1ÿ a�! jÿbÿ1 dÿbÿ1 �92�
Since /�t� � /c ÿ e; one can simply identify the constant
as /c. Recalling that e � �d�1=2; from the second term in
Eq. (92) it is evident that 1/2=aÿ 1, so that a=3/2.
That is, the asymptotic form of Eq. (88) is consistent
with behavior of /�t� near tc. In fact there is a one-to-
one correspondence between the asymptotics of #N as
expressed by Eq. (88) and the behavior of /�t� near
t � tc, as in Eq. (92). This correspondence can be
understood on the basis of the Cauchy relation:

#N � �N !=2pi�
I

/�N��tc��zÿ tc�ÿNdz �93�

where /�N��tc� indicates the N th derivatives of /�t� with
respect to t, as evaluated at t � tc, and the contour of the
integral is a cycle around tc in the complex plane.

Once the asymptotic behavior for rooted tree counts
is known, the asymptotic behavior of unrooted tree
(polynoid isomer) counts can be deduced. A power series

U�t� �
X
N�0

#�N tN �94�

for N-atom polyenoid isomer counts #N
� can be de®ned,

and with the use of the ideas about constructing
unrooted trees from the rooted ones as has been
discussed earlier, one can determine the relationship
between U�t� and /�t� in the many-atom limit. The result

#�N � Nÿ1ÿa jN
n

A� BNÿ1 � O�Nÿ2�
o

�95�
where a and j are the same as in Eqs. (88) and (92), can
be derived in a rigorous manner (e.g. see Harary et al.
[29]), though it can be understood from rather general
considerations without going through the formal deri-
vation. Indeed, an N-atom polyenoid has N � 2 hydro-
gens and after removal of any of these hydrogens there
results a rooted (tree) structure, though sometimes the

removal of di�erent H-atoms may yield the same rooted
structure. Thus, in general, there can be no more than N
possibilities to construct a rooted (tree) structure from it,
and likewise there can be no fewer than N=s where s is
a (maximum possible) symmetry number, which for
typical structures should not be too large. On average,
then, one expect that #N � N#�N ; which implies Eq. (95).
Although, in this section, we restricted the analysis of
the asymptotic forms to polyenoid structural isomer
counts, the resulting asymptotic forms remain the same
for polyene isomers as well.

Besides the asymptotic behavior of isomer counts, it
is possible to make some comments regarding the as-
ymptotic forms for average properties of isomer classes
as well. For instance, the mean numbers of atom types
(n � primary, secondary, or tertiary) per isomer at a
given N are expected to be non-zero fractions of the total
number of carbons

h#niN � An N � Bn �96�
where An is the (asymptotic) mean fraction of such sites,
and Bn is a higher-order correction. Also, a similar
expression is expected to hold for the mean numbers of
radical sites per isomer h#uiN asymptotic behavior.

The asymptotic form for the mean diameter hDiN
(through-bond) is somewhat di�erent. Earlier polymer
statistical results [30] indicate that the diameter averaged
over all conformations is � N 1=2, so that by analogy for
the current isomer averages we might expect that

hDiN � AD�N�1=2 � BD �97�
where AD and BD are the certain constants. Now, we
proceed with the numerics.

5.2 Asymptotic numerics

The asymptotic forms deduced in the preceding section
can be used to ®t the numerical data as listed in Tables
1±4. The ®rst step in asymptotic numerics of isomer
counts is the determination of the growth factor j, which
can be found with a rather high accuracy. We seek to
determine the growth factor j for three di�erent counts:
for structural isomers of polyenoids, for structural
isomers of polyenes, and for geometric isomers (cis/
trans about both CAC and C@C bonds) of polyenes.
The result for geometric isomers of polyenes can be
easily obtained in an analytic way, while the ®rst two
isomer types require a more numerical (but related)
approach for the deduction of their j (or tc).

We begin with the (analytic) determination of tc for
geometric isomers of polyenes. It is evident from
Eqs. (16), (17) and (27) that the generating functions of
interest have the following forms

r�t� � 1� 2t r�t� d�t� �98�
d�t� � t �r�t��2 �99�
for single and double dangling bonds, respectively. The
substitution of Eq. (99) into Eq. (98) leads to the relation

r�t� � 1� 2t2r�t�3 �100�
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which is a cubic polynomial in r�t�. This could be solved
analytically and analyzed to yield the critical behavior.
Following the arguments near Eq. (81) we de®ne
F �x� � a� bx3, so that the solution to Eq. (100) is
equivalent to the solution of x � F �x� where x � r�t�,
a � 1, and b � 2t2. Further, at t � tc, dF �x�=dx � 1;
whence it follows that �r�tc��2 � 1=6tc2. Then after
substitution into Eq. (100) one is lead to

r�tc� � 3=2 and tc � �2=27�1=2 �101�
which are quite neatly explicit.

The determination of tc for structural isomers of
polyenes and polyenoids, however does not seem to be
quite so analytically soluble. The polyenoid case is
simpler, and involves an overall generating function for
rooted polyenoids, as already noted in Eq. (80):

/�t� � 1� �t=2� f�/�t��2 � /�t2�g �102�
Owing to the presence of the term /�t2�, one cannot so
straightforwardly use this equation to solve for tc as we
just did for the case of geometric isomers of polyenes.
However, one can start from high power z > 2M of t where
tz � 0 and /�tz� � /�0� � 1, and then recur downward,
obtaining at the kth step/�tz�k��, where z�k� � zk � 2�Mÿk�,
until at the Mth step we reach /�t1� � /�t�. The choice
of powers z for t�0 < t < 1� is made with reference to a
suitable small tolerance e such that tz � e, so that
/�tz� � 1� O�e� [while /�t� � 1� O�t��.

The recursion at each step involves the solution of a
polynomial (which here is a quadratic) equation for
/�tz�k�� in terms of t and higher-order /�tz�kÿ1�� (which
has already been obtained) where z�k� � 2Mÿk and
z�k ÿ 1� � 2�Mÿk�1�. Furthermore, if our guessed value
for t was t < tc, then the recursion procedure leads to a
real polynomial root at the last step (where one has a
situation as in Fig. 11a), otherwise if t > tc it does not
(where one has a situation as in Fig. 11c). Thus within a
chosen tolerance e one can rather easily decide whether a
given t is > tc or < tc. Therefore, one can use the
following procedures for deducing tc:

1. Choose bounds 0 < t < 1.
2. Guess value t � 0:1 and (a) if the resulting root is real,

then increase t value by the step-size Dt � 0:1 and
repeat this every time before reinitializing the recur-
sion procedure until the root at some step (say, mth
step) becomes imaginary, indicating that tmÿ1 < tc
< tm; (b) on the other hand, if the root is imaginary,
go to the step (with tmÿ1 � 0).

3. Now, start with t � tmÿ1 � 0:01 (one order smaller
step-size), repeating essentially the same steps as in 2
but using this new step-size.

Following this procedure, after (at the most) 10 � 10
steps one arrives at a tc estimate within our chosen tole-
rance of e � 10ÿ10. The obtained t critical value for
polyenoid structural isomer counts is tc � 0:4026975036,
which surpasses Otter's [28] value of seven signi®cant
digits.

The procedure for obtaining tc in the case of polyene
structural isomers proceeds in essentially the same way,
though the generating function involved is di�erent. For

rooted trees of structural isomers of polyenes we have
[with r�t� and d�t� representing dangling single and
double bonds, respectively]:

r�t� � 1� tr�t�d�t� �103�
d�t� � �t=2�f�r�t��2 � r�t2�g �104�
After the substitution of Eq. (104) into Eq. (103) one
obtains

r�t� � 1� �t2=2�r�t2�r�t� � �t2=2��r�t��3 �105�
Following the same steps as already outlined, one arrives
at the recursion procedure (moving downwards from
some high t powers). This procedure involves at each
step the solution of a polynomial (which this time is
cubic). Using this procedure with a tolerance of
e � 10ÿ10 the consequent estimate for t-critical is
tc � 0:4573321739.

Granted the growth factor j � 1=tc for isomer classes
and sub-classes mentioned above, the next step is the
determination of the (A and B proportionality constants
and exponents in the asymptotic forms for di�erent
quantities. These proportionality constants and expo-
nents can be deduced from the examination of the
numerical data listed in Tables 1±5. In particular, for a
quantity N with an asymptotic leading term ��ANb� one
can analyze for the exponent b. For instance, in the case
hDiN � NN the argument of the proceeding section in-
dicates that b � 1=2, so that a plot of hDiN=

p
N versus

1=
p

N should asymptotically yield a straight line with
intercept A and slope B:

hDiN=�N�1=2 � A� B=N1=2 � C=N �106�
Thence using our data for hDiN , a ®t to this functional
form yields values for A, B, and C. In the same way we

Table 5. Polyene and polyenoid asymptotics

Asymptotic form: N � N a �A� BNÿb � CNÿ2b�
N a b A B C

Conjugated polyene structural isomers

1. #s
N=j

N )5/2 1 1.2973 )3.22 20.7

2. áDñN 1/2 1/2 4.233 )8.77 7.6

3. á#pñN 1 1 0.26316 0.829 0.67

4. á#sñN 1 1 0.4737 0.343 )1.33
5. á#tñN 1 1 0.26316 )1.171 0.67

Conjugated polyene geometric isomers

6. #g
N=j

N )5/2 1 0.3456 )1.11 2.7

Polyenoid structural isomers

7. #s;p
N =jN )5/2 1 1.266 )3.12 26.3

8. á#uñN 1 1 0.10139 0.459 0.48

Asymptotic form: N � AjN

N A j

9. á#confñN 0.26639 1.68034

10. áYnrñN 1.0247 0.880536
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can deal with the other quantities of interest (isomer
counts or properties). The numerical data we used
includes isomer counts up to N � 98 carbon atoms (for
structural isomers), up to N � 66 (for geometric isomers)
of polyenes, and up to N � 45 for structural isomers of
polyenoids. The data analysis of atom types (in polyene
structural isomers) includes results up to just N � 70
carbon atoms, and for the mean number of radical sites
per isomer up to N � 45 (in structural isomers of
polyenoids); for hDiN we include data up to N � 110.
All the quantities N mentioned here were found to have
the following general form for the asymptotic behavior:

hNiN=�N�a � A� B=Nb � C=�N�2b �107�
where A, B, and C are ®tting constants, and a and b are
exponents.

The other asymptotic form that is suitable for the
quantities such as the non-radical fraction of polyenoids
�Y nr�N or the mean number of conformations h#confiN
easily follows from the behavior of the asymptotic forms
for the components which we have already obtained.
In particular, for �Y nr�N one has (restricting only to the
leading term):

�Y nr�N � �#nr�N=�#all�N
� �A1Nÿ5=2jN

1 �=�A2Nÿ5=2jN
2 � �108�

which leads to

�Y nr�N � �A1=A2� � �j1=j2�N �109�
where �#nr�N is the non-radical (polyene) count, �#all�N
is the total count of polyenoid isomers for a given N , and
subscript ``1'' marks the constants for polyenes, ``2'' for
polyenoids. Here we restrict ourselves to structural
isomers only. On the basis of Eq. (109) one is easily
led to the asymptotic form for �Y nr�N :
ln�Y nr�N � a� bN �110�
where a � ln�A1=A2� and b � ln�j1=j2�. The same
argument applies to the mean number of conformations
h#confiN .

The procedure of ®tting is based on the weighted
least-squares technique where the weights are deter-
mined by the presumed next leading term in the power
series expansion. In ®tting a quantity ZN to a functional
form f �N�, one minimizes a least-squares error

X �
X

N

fZN ÿ f �N�g2wN �111�

Here

f �N� �
X

i

aifi�N� �112�

where fi�N� are basis functions, the ai are parameters,
and the wN are weights. Then taking derivatives with
respect to each aj and setting them to 0, one obtains

X
N

�
ZN ÿ

�X
i

aifi�N�
��2

fj�N�wN � 0 �113�

This procedure allows one to obtain fairly accurate
asymptotic values of the constants A, B, and C, as are
listed in Table 5.

6 Conclusions

The present work on isomer combinatorics of fully
conjugated acyclic polyenes, and to some extent of
polyenoids, yields results on a wide variety of quantities
that are of interest for chemistry. A variety of numerical
results for individual numbers N of carbons are found in
Tables 1±4. Special attention has been paid to the
separation of the polyenoid counts (already reported
by Cyvin et al. [14, 15] and Yeh [16]) into subsets labeled
by the di�erent degrees of radicality, and for the di-
radical case a further subdivision into spin-singlet and
spin-triplet di-radicals has been made. The fraction of
polyenoids which are non-radical diminishes exponen-
tially fast as the carbon number N increases. On the
other hand, it was exhibited how the average number of
conformations per structural isomer (de®ned as the ratio
of the geometric isomer counts to that of structural
isomers) in polyenes increases exponentially with N (as
N approaches 1). The average degree of radicality of
the polyenoids appears to increase in proportion to N .
A variety of quantitative asymptotic behaviors are
summarized in Table 5.

Another novel development here is the tabulated
average conjugated- polyene properties, including: heats
of formation, indices of refraction, and magnetic sus-
ceptibilities as functions of the carbon atom number N .
In addition, the property Figs. 8 and 9 indicate standard
deviations, all utilizing the ``group contribution'' scheme
to estimate properties. The comparison of the standard
deviations to di�erences of averages for neighboring
isomer classes provides a measure of how the isomer
properties overlap between di�erent isomer classes. In
particular, from the Figs. 8 and 9 representing data for
DHf and vm one observes no overlap with the averages of
the nearest neighbor classes. But this overlap slowly in-
creases with increasing N , though even at N=70 there is
no overlap with the averages of nearest neighbors. The
data for the standard deviations is consistent with these
deviations scaling �N 1=2, and one might surmise that a
normal distribution for the considered properties is ap-
proached for large-N isomer classes (much as the dis-
tribution of net displacements for a forward-biased
random walk).

An interesting and hopefully useful formal com-
binatoric chemistry beyond the classical enumerations
seems possible.
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